ENIB 2023 : accélérocube : Différence entre versions
| Ligne 17 : | Ligne 17 : | ||
==Code== | ==Code== | ||
<pre> | <pre> | ||
| − | + | #include <Wire.h> | |
| + | const int MPU_addr=0x3F; | ||
| + | int gyro_x, gyro_y, gyro_z; | ||
| + | long gyro_x_cal, gyro_y_cal, gyro_z_cal; | ||
| + | boolean set_gyro_angles; | ||
| + | |||
| + | long acc_x, acc_y, acc_z, acc_total_vector; | ||
| + | float angle_roll_acc, angle_pitch_acc; | ||
| + | |||
| + | float angle_pitch, angle_roll; | ||
| + | int angle_pitch_buffer, angle_roll_buffer; | ||
| + | float angle_pitch_output, angle_roll_output; | ||
| + | int diceNum; | ||
| + | |||
| + | long loop_timer; | ||
| + | int temp; | ||
| + | |||
| + | |||
| + | void setup() { | ||
| + | |||
| + | Wire.begin(); | ||
| + | setup_mpu_6050_registers(); | ||
| + | for (int cal_int = 0; cal_int < 1000 ; cal_int ++){ | ||
| + | read_mpu_6050_data(); | ||
| + | //Add the gyro x offset to the gyro_x_cal variable | ||
| + | gyro_x_cal += gyro_x; | ||
| + | //Add the gyro y offset to the gyro_y_cal variable | ||
| + | gyro_y_cal += gyro_y; | ||
| + | //Add the gyro z offset to the gyro_z_cal variable | ||
| + | gyro_z_cal += gyro_z; | ||
| + | //Delay 3us to have 250Hz for-loop | ||
| + | delay(3); | ||
| + | } | ||
| + | gyro_x_cal /= 1000; | ||
| + | gyro_y_cal /= 1000; | ||
| + | gyro_z_cal /= 1000; | ||
| + | Serial.begin(115200); | ||
| + | loop_timer = micros(); | ||
| + | |||
| + | } | ||
| + | |||
| + | void loop() { | ||
| + | // Get data from MPU-6050 | ||
| + | read_mpu_6050_data(); | ||
| + | |||
| + | //Subtract the offset values from the raw gyro values | ||
| + | gyro_x -= gyro_x_cal; | ||
| + | gyro_y -= gyro_y_cal; | ||
| + | gyro_z -= gyro_z_cal; | ||
| + | |||
| + | //Gyro angle calculations . Note 0.0000611 = 1 / (250Hz x 65.5) | ||
| + | |||
| + | //Calculate the traveled pitch angle and add this to the angle_pitch variable | ||
| + | angle_pitch += gyro_x * 0.0000611; | ||
| + | //Calculate the traveled roll angle and add this to the angle_roll variable | ||
| + | //0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians | ||
| + | angle_roll += gyro_y * 0.0000611; | ||
| + | |||
| + | //If the IMU has yawed transfer the roll angle to the pitch angle | ||
| + | angle_pitch += angle_roll * sin(gyro_z * 0.000001066); | ||
| + | //If the IMU has yawed transfer the pitch angle to the roll angle | ||
| + | angle_roll -= angle_pitch * sin(gyro_z * 0.000001066); | ||
| + | |||
| + | //Accelerometer angle calculations | ||
| + | |||
| + | //Calculate the total accelerometer vector | ||
| + | acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z)); | ||
| + | |||
| + | //57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians | ||
| + | //Calculate the pitch angle | ||
| + | angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296; | ||
| + | //Calculate the roll angle | ||
| + | angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296; | ||
| + | |||
| + | //Accelerometer calibration value for pitch | ||
| + | angle_pitch_acc -= 0.0; | ||
| + | //Accelerometer calibration value for roll | ||
| + | angle_roll_acc -= 0.0; | ||
| + | if(set_gyro_angles){ | ||
| + | |||
| + | //If the IMU has been running | ||
| + | //Correct the drift of the gyro pitch angle with the accelerometer pitch angle | ||
| + | angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004; | ||
| + | //Correct the drift of the gyro roll angle with the accelerometer roll angle | ||
| + | angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004; | ||
| + | } | ||
| + | else{ | ||
| + | //IMU has just started | ||
| + | //Set the gyro pitch angle equal to the accelerometer pitch angle | ||
| + | angle_pitch = angle_pitch_acc; | ||
| + | //Set the gyro roll angle equal to the accelerometer roll angle | ||
| + | angle_roll = angle_roll_acc; | ||
| + | //Set the IMU started flag | ||
| + | set_gyro_angles = true; | ||
| + | } | ||
| + | |||
| + | //To dampen the pitch and roll angles a complementary filter is used | ||
| + | //Take 90% of the output pitch value and add 10% of the raw pitch value | ||
| + | angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1; | ||
| + | //Take 90% of the output roll value and add 10% of the raw roll value | ||
| + | angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1; | ||
| + | //Wait until the loop_timer reaches 4000us (250Hz) before starting the next loop | ||
| + | |||
| + | // Print to Serial Monitor | ||
| + | //Serial.print(" | Angle = "); Serial.println(angle_pitch_output); | ||
| + | |||
| + | |||
| + | // Check Angle for Level LEDs | ||
| + | |||
| + | if (angle_pitch_output < -2.01) { | ||
| + | // Turn on Level LED | ||
| + | digitalWrite(levelLED_neg1, HIGH); | ||
| + | digitalWrite(levelLED_neg0, LOW); | ||
| + | digitalWrite(levelLED_level, LOW); | ||
| + | digitalWrite(levelLED_pos0, LOW); | ||
| + | digitalWrite(levelLED_pos1, LOW); | ||
| + | |||
| + | } else if ((angle_pitch_output > -2.00) && (angle_pitch_output < -1.01)) { | ||
| + | // Turn on Level LED | ||
| + | digitalWrite(levelLED_neg1, LOW); | ||
| + | digitalWrite(levelLED_neg0, HIGH); | ||
| + | digitalWrite(levelLED_level, LOW); | ||
| + | digitalWrite(levelLED_pos0, LOW); | ||
| + | digitalWrite(levelLED_pos1, LOW); | ||
| + | |||
| + | } else if ((angle_pitch_output < 1.00) && (angle_pitch_output > -1.00)) { | ||
| + | // Turn on Level LED | ||
| + | digitalWrite(levelLED_neg1, LOW); | ||
| + | digitalWrite(levelLED_neg0, LOW); | ||
| + | digitalWrite(levelLED_level, HIGH); | ||
| + | digitalWrite(levelLED_pos0, LOW); | ||
| + | digitalWrite(levelLED_pos1, LOW); | ||
| + | |||
| + | } else if ((angle_pitch_output > 1.01) && (angle_pitch_output < 2.00)) { | ||
| + | // Turn on Level LED | ||
| + | digitalWrite(levelLED_neg1, LOW); | ||
| + | digitalWrite(levelLED_neg0, LOW); | ||
| + | digitalWrite(levelLED_level, LOW); | ||
| + | digitalWrite(levelLED_pos0, HIGH); | ||
| + | digitalWrite(levelLED_pos1, LOW); | ||
| + | |||
| + | } else if (angle_pitch_output > 2.01) { | ||
| + | // Turn on Level LED | ||
| + | digitalWrite(levelLED_neg1, LOW); | ||
| + | digitalWrite(levelLED_neg0, LOW); | ||
| + | digitalWrite(levelLED_level, LOW); | ||
| + | digitalWrite(levelLED_pos0, LOW); | ||
| + | digitalWrite(levelLED_pos1, HIGH); | ||
| + | |||
| + | } | ||
| + | } | ||
| + | |||
| + | |||
| + | while(micros() - loop_timer < 4000); | ||
| + | //Reset the loop timer | ||
| + | loop_timer = micros(); | ||
| + | |||
| + | } | ||
| + | |||
| + | void setup_mpu_6050_registers(){ | ||
| + | |||
| + | //Activate the MPU-6050 | ||
| + | |||
| + | //Start communicating with the MPU-6050 | ||
| + | Wire.beginTransmission(0x68); | ||
| + | //Send the requested starting register | ||
| + | Wire.write(0x6B); | ||
| + | //Set the requested starting register | ||
| + | Wire.write(0x00); | ||
| + | //End the transmission | ||
| + | Wire.endTransmission(); | ||
| + | |||
| + | //Configure the accelerometer (+/-8g) | ||
| + | |||
| + | //Start communicating with the MPU-6050 | ||
| + | Wire.beginTransmission(0x68); | ||
| + | //Send the requested starting register | ||
| + | Wire.write(0x1C); | ||
| + | //Set the requested starting register | ||
| + | Wire.write(0x10); | ||
| + | //End the transmission | ||
| + | Wire.endTransmission(); | ||
| + | |||
| + | //Configure the gyro (500dps full scale) | ||
| + | |||
| + | //Start communicating with the MPU-6050 | ||
| + | Wire.beginTransmission(0x68); | ||
| + | //Send the requested starting register | ||
| + | Wire.write(0x1B); | ||
| + | //Set the requested starting register | ||
| + | Wire.write(0x08); | ||
| + | //End the transmission | ||
| + | Wire.endTransmission(); | ||
| + | |||
| + | } | ||
| + | |||
| + | |||
| + | void read_mpu_6050_data(){ | ||
| + | |||
| + | //Read the raw gyro and accelerometer data | ||
| + | |||
| + | //Start communicating with the MPU-6050 | ||
| + | Wire.beginTransmission(0x68); | ||
| + | //Send the requested starting register | ||
| + | Wire.write(0x3B); | ||
| + | //End the transmission | ||
| + | Wire.endTransmission(); | ||
| + | //Request 14 bytes from the MPU-6050 | ||
| + | Wire.requestFrom(0x68,14); | ||
| + | //Wait until all the bytes are received | ||
| + | while(Wire.available() < 14); | ||
| + | |||
| + | //Following statements left shift 8 bits, then bitwise OR. | ||
| + | //Turns two 8-bit values into one 16-bit value | ||
| + | acc_x = Wire.read()<<8|Wire.read(); | ||
| + | acc_y = Wire.read()<<8|Wire.read(); | ||
| + | acc_z = Wire.read()<<8|Wire.read(); | ||
| + | temp = Wire.read()<<8|Wire.read(); | ||
| + | gyro_x = Wire.read()<<8|Wire.read(); | ||
| + | gyro_y = Wire.read()<<8|Wire.read(); | ||
| + | gyro_z = Wire.read()<<8|Wire.read(); | ||
| + | |||
| + | |||
| + | } | ||
</pre> | </pre> | ||
Version du 19 janvier 2023 à 15:22
photo du projet
Que fait ce projet ?
Cube qui éclaire une ampoule si posé vers le haut
Liste des composants
- ampoule
- accéléromètre
- bois
- vis
- pinces croco
- batterie
- carte arduino
Code
#include <Wire.h>
const int MPU_addr=0x3F;
int gyro_x, gyro_y, gyro_z;
long gyro_x_cal, gyro_y_cal, gyro_z_cal;
boolean set_gyro_angles;
long acc_x, acc_y, acc_z, acc_total_vector;
float angle_roll_acc, angle_pitch_acc;
float angle_pitch, angle_roll;
int angle_pitch_buffer, angle_roll_buffer;
float angle_pitch_output, angle_roll_output;
int diceNum;
long loop_timer;
int temp;
void setup() {
Wire.begin();
setup_mpu_6050_registers();
for (int cal_int = 0; cal_int < 1000 ; cal_int ++){
read_mpu_6050_data();
//Add the gyro x offset to the gyro_x_cal variable
gyro_x_cal += gyro_x;
//Add the gyro y offset to the gyro_y_cal variable
gyro_y_cal += gyro_y;
//Add the gyro z offset to the gyro_z_cal variable
gyro_z_cal += gyro_z;
//Delay 3us to have 250Hz for-loop
delay(3);
}
gyro_x_cal /= 1000;
gyro_y_cal /= 1000;
gyro_z_cal /= 1000;
Serial.begin(115200);
loop_timer = micros();
}
void loop() {
// Get data from MPU-6050
read_mpu_6050_data();
//Subtract the offset values from the raw gyro values
gyro_x -= gyro_x_cal;
gyro_y -= gyro_y_cal;
gyro_z -= gyro_z_cal;
//Gyro angle calculations . Note 0.0000611 = 1 / (250Hz x 65.5)
//Calculate the traveled pitch angle and add this to the angle_pitch variable
angle_pitch += gyro_x * 0.0000611;
//Calculate the traveled roll angle and add this to the angle_roll variable
//0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians
angle_roll += gyro_y * 0.0000611;
//If the IMU has yawed transfer the roll angle to the pitch angle
angle_pitch += angle_roll * sin(gyro_z * 0.000001066);
//If the IMU has yawed transfer the pitch angle to the roll angle
angle_roll -= angle_pitch * sin(gyro_z * 0.000001066);
//Accelerometer angle calculations
//Calculate the total accelerometer vector
acc_total_vector = sqrt((acc_x*acc_x)+(acc_y*acc_y)+(acc_z*acc_z));
//57.296 = 1 / (3.142 / 180) The Arduino asin function is in radians
//Calculate the pitch angle
angle_pitch_acc = asin((float)acc_y/acc_total_vector)* 57.296;
//Calculate the roll angle
angle_roll_acc = asin((float)acc_x/acc_total_vector)* -57.296;
//Accelerometer calibration value for pitch
angle_pitch_acc -= 0.0;
//Accelerometer calibration value for roll
angle_roll_acc -= 0.0;
if(set_gyro_angles){
//If the IMU has been running
//Correct the drift of the gyro pitch angle with the accelerometer pitch angle
angle_pitch = angle_pitch * 0.9996 + angle_pitch_acc * 0.0004;
//Correct the drift of the gyro roll angle with the accelerometer roll angle
angle_roll = angle_roll * 0.9996 + angle_roll_acc * 0.0004;
}
else{
//IMU has just started
//Set the gyro pitch angle equal to the accelerometer pitch angle
angle_pitch = angle_pitch_acc;
//Set the gyro roll angle equal to the accelerometer roll angle
angle_roll = angle_roll_acc;
//Set the IMU started flag
set_gyro_angles = true;
}
//To dampen the pitch and roll angles a complementary filter is used
//Take 90% of the output pitch value and add 10% of the raw pitch value
angle_pitch_output = angle_pitch_output * 0.9 + angle_pitch * 0.1;
//Take 90% of the output roll value and add 10% of the raw roll value
angle_roll_output = angle_roll_output * 0.9 + angle_roll * 0.1;
//Wait until the loop_timer reaches 4000us (250Hz) before starting the next loop
// Print to Serial Monitor
//Serial.print(" | Angle = "); Serial.println(angle_pitch_output);
// Check Angle for Level LEDs
if (angle_pitch_output < -2.01) {
// Turn on Level LED
digitalWrite(levelLED_neg1, HIGH);
digitalWrite(levelLED_neg0, LOW);
digitalWrite(levelLED_level, LOW);
digitalWrite(levelLED_pos0, LOW);
digitalWrite(levelLED_pos1, LOW);
} else if ((angle_pitch_output > -2.00) && (angle_pitch_output < -1.01)) {
// Turn on Level LED
digitalWrite(levelLED_neg1, LOW);
digitalWrite(levelLED_neg0, HIGH);
digitalWrite(levelLED_level, LOW);
digitalWrite(levelLED_pos0, LOW);
digitalWrite(levelLED_pos1, LOW);
} else if ((angle_pitch_output < 1.00) && (angle_pitch_output > -1.00)) {
// Turn on Level LED
digitalWrite(levelLED_neg1, LOW);
digitalWrite(levelLED_neg0, LOW);
digitalWrite(levelLED_level, HIGH);
digitalWrite(levelLED_pos0, LOW);
digitalWrite(levelLED_pos1, LOW);
} else if ((angle_pitch_output > 1.01) && (angle_pitch_output < 2.00)) {
// Turn on Level LED
digitalWrite(levelLED_neg1, LOW);
digitalWrite(levelLED_neg0, LOW);
digitalWrite(levelLED_level, LOW);
digitalWrite(levelLED_pos0, HIGH);
digitalWrite(levelLED_pos1, LOW);
} else if (angle_pitch_output > 2.01) {
// Turn on Level LED
digitalWrite(levelLED_neg1, LOW);
digitalWrite(levelLED_neg0, LOW);
digitalWrite(levelLED_level, LOW);
digitalWrite(levelLED_pos0, LOW);
digitalWrite(levelLED_pos1, HIGH);
}
}
while(micros() - loop_timer < 4000);
//Reset the loop timer
loop_timer = micros();
}
void setup_mpu_6050_registers(){
//Activate the MPU-6050
//Start communicating with the MPU-6050
Wire.beginTransmission(0x68);
//Send the requested starting register
Wire.write(0x6B);
//Set the requested starting register
Wire.write(0x00);
//End the transmission
Wire.endTransmission();
//Configure the accelerometer (+/-8g)
//Start communicating with the MPU-6050
Wire.beginTransmission(0x68);
//Send the requested starting register
Wire.write(0x1C);
//Set the requested starting register
Wire.write(0x10);
//End the transmission
Wire.endTransmission();
//Configure the gyro (500dps full scale)
//Start communicating with the MPU-6050
Wire.beginTransmission(0x68);
//Send the requested starting register
Wire.write(0x1B);
//Set the requested starting register
Wire.write(0x08);
//End the transmission
Wire.endTransmission();
}
void read_mpu_6050_data(){
//Read the raw gyro and accelerometer data
//Start communicating with the MPU-6050
Wire.beginTransmission(0x68);
//Send the requested starting register
Wire.write(0x3B);
//End the transmission
Wire.endTransmission();
//Request 14 bytes from the MPU-6050
Wire.requestFrom(0x68,14);
//Wait until all the bytes are received
while(Wire.available() < 14);
//Following statements left shift 8 bits, then bitwise OR.
//Turns two 8-bit values into one 16-bit value
acc_x = Wire.read()<<8|Wire.read();
acc_y = Wire.read()<<8|Wire.read();
acc_z = Wire.read()<<8|Wire.read();
temp = Wire.read()<<8|Wire.read();
gyro_x = Wire.read()<<8|Wire.read();
gyro_y = Wire.read()<<8|Wire.read();
gyro_z = Wire.read()<<8|Wire.read();
}
